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TECHNICAL MEMORANDUM X-64865

EFFECT OF GRAVITATIONAL AND AERODYNAMIC
TORQUES ON A RIGID SKYLAB-TYPE SATELLITE

I. INTRODUCTION

The behavior of a Skylab-type satellite under the influence of gravita-

tional and aerodynamic torques is investigated. Only the simple case of free

molecular flow of uniform velocity and completely diffuse reflection (i.e., the

atmospheric particle transfers its total relative momentum to the satellite at

impact) is considered. The aerodynamic torque on the satellite is expanded

into a Fourier series with respect to the two angles characterizing the direction

of the atmospheric velocity vector relative to the satellite. Making use of some

invariance properties and symmetries of the satellite, and neglecting some

relatively small effects of the torque, these Fourier series can be simplified;

i.e., it can be shown that many terms vanish. The resulting expressions,

suitably truncated, coincide with those given by Nurre [1], which he derived

by numerical methods. Applying the standard methods of linear stability to the

linearized equations of motion, it is found that the satellite does not have a

stable equilibrium position. The presentation comprises sufficient details to

make it a useful aid in similar studies.

II. ASSUMPTIONS

Throughout this study, the following assumptions are made:

1. The satellite is a rigid body.

2. The satellite orbits the central body in a circular orbit; the central

body is represented by a point mass, orbital and rotational motion of the satel-

lite are not coupled, and only the principal term of the gravitational torque is

taken into account.

3. The atmosphere is resting with respect to a frame with inertial

directions (i.e., the primary and its atmosphere do not rotate).



4. Only the case of completely diffuse reflection (accommodation
coefficient equals 1) is studied, i.e., the atmospheric particle is at rest with
respect to the satellite immediately after hitting the satellite; in other words,
the atmospheric particle transfers its entire relative linear momentum to the
satellite.

I 1. EQUATIONS OF MOTION

Three coordinate frames will be used: an inertial frame, an orbital
frame, and a satellite-fixed body frame. All coordinate systems are right-
handed cartesian systems.

A. Inertial Frame Y

The inertial frame Y has its origin at the center of mass of the satel-
lite, and the directions of the coordinate axes are space fixed. The Y 1-axis
and Y:-axis are in the plane of motion, and the Y2-axis is in the direction of
the orbital angular momentum vector. The inertial frame will not be used
explicitly, but serves as a basic reference and starting point to develop
coordinate transformations and equations of motion.

B. Orbital Frame i

The orbital frame 5 has its origin at the center of mass of the satellite,
and it rotates uniformly with respect to the inertial frame with angular speed
£. The .3-axis coincides with the line from the central body to the satellite,
the 1-axis is in the direction of the satellite's velocity, and the 2-axis coin-
cides with the Y2-axis. We have

cQ2t 0 -s2 t 0

WY = 0 1 0 Y, £ = , (1)

s£ t 0 cQ2t 0

where 2 is the constant angular velocity of the orbital frame with respect to
the inertial frame, represented in the orbital frame (Fig. 1).
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SATELLITE

3 Y

Figure 1. Inertial and orbital coordinate systems.

C. Body Frame

The body frame is fixed in the satellite; we will use the following four

coordinate systems fixed in the body.

1. 1-Coordinate System. This is a general body fixed system, with
its origin at the satellite's center of mass. Occasionally we will specialize

it to utilize certain properties of the satellite, such as symmetries, etc.

Many of our equations will be written in this system. The rotation from the

orbital -- system to the 7r-system is represented as a product of three plane

rotations: rotate through 01 with fixed 1-axis, then through 02 with fixed new

2-axis, then through 03 with fixed new 3-axis. Thus

c S3 0 ( c2 0 -S02 1 0 0

0 = , 0= s3 c3 0/\ 0 1 0 0 co, sI

0 0 1 S2 0 C0) 0 -s co)

3



C2 C3 C 1 s3 + s1 S2 C3  S1 S3 - C1 S2 C3

C2 S3  1 c3 - s 2s 3  s1 C3 + c1 s2 s3  (2)

s2 - s1 c 2  C 1 c 2

C2 C3 41 + S3 42

S -C2 s3 4 1 + c3 42  (3)

where we have written c2 for c0 2, etc. w is the angular velocity of the _7-
system with respect to the orbital T-system, represented in the i'-system.

2. X-Coordinate System. The origin of the X-coordinate system is at
the satellite's center of mass; the directions of the axes are chosen such that
the inertia matrix is diagonal (principal axes system). The rotation from the
h-system to the X-system and its matrix 0 are defined as for the 7" system,
with -1 , 92, 13 replacing 01, 02, 03.

3. Z-Coordinate System. The origin of the Z-coordinate system is
at the satellite's center of mass; the directions of the axes are chosen so as to
exhibit geometrical symmetries, etc., of the satellite. The rotation from the
-system to the Z-system and its matrix D are defined as for the T-system,

with 91, 92, 93 replacing 1, 42, 43.

4. t-Coordinate System. The axes of the t-coordinate system are
parallel to those of the -system; its origin is chosen so that the coordinates
adapt to the geometry of the satellite.

If Z is the vector from the origin of the Z-system to the origin of the
T-system, then

= z- z (4)

4



Figure 2 illustrates the various coordinate systems and their relations.

BODY. CENTER
OF MASS

MASS DISTRIBUTION

BODY. CENTER

OF MASS ORBITAL INERTIAL
G E N E R A L

BODY.
BODY TRANSLATION CENTER b

GEOMETRICAL OF MASS
ZT GEOMETRICAL

Figure 2. Diagram of coordinate systems and their relations.

The equation of rotational motion of the satellite, referred to a body
frame, reads

IW*+ 7*x I&I-7 = 0 , (5)

where

I = (constant) moment of inertia matrix,

w = angular velocity of the body frame with respect to the inertial
frame (and represented in the body frame),

" = 1 + " = gravitational torque plus aerodynamic torque.
g a

For the subsequent discussions, we shall represent all quantities in the body
frame; we then have

-,/

w = , + , (6)

where, as stated before,
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w = angular velocity of the body frame with respect to the orbital
frame, represented in the body frame,

2 = ~2 ; 2 is the angular velocity of the orbital frame with respect
to the inertial frame, represented in the orbital frame; for rep-
resentation in the body frame it is multiplied by the transforma-
tion matrix p.

It follows that

w = w + A2 + 4

and with 2 = 0 in our case,

w =w -wx 2

or

W W WXQ (7)

We thus arrive at the equation of motion

I(w- xQ)+ (I+Q) xi(W +?) -) - =0 , (8)g a

where

012 C1 S3 1 S2 C3

022 = 3 - S1 S2 S (9)

032 - St C2

w is given in equation (3), and
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C2 e3 s3 0 -S2 C3 -C2 S3
= -C2 S 1 + C 2 + (5 1 + S2 S3 1 2 C3 1 3

s2 0 1 C2 0

Cg

+ -S 2 '03 (10)

IV. GRAVITATIONAL TORQUE

For a satellite orbiting the central body in a circular orbit with constant
angular speed f0, the principal term of the gravitational torque is

7 = 3Q 2 rx Ir (11)

where r is the unit vector from the central body to the satellite. For the
orbital frame, denoting the vector by r , we obviously have

r = (12)

hence

S1313)
r 23 , (13)

033
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and, if we specialize the coordinate system such that

It 0 0

I = 10 2 0 (principal axes system), (14)

0 13

we get

(1I3-12) 023 033

r x Ir= 11- I3) 013 33 . (15)

2 i- ) 013 023 /

The matrix elements 0jk of 4 can be read from equation (2).

V. AERODYNAMIC FORCE AND TORQUE

The atmosphere is considered as a continuous medium which transfers
its entire relative momentum to the surface of the satellite at impact.

A. Differential Force

We calculate the force exerted by the atmosphere on a surface element
of the satellite in the body frame. The basic equation from which we start is

dl" = vdm , (16)

8



where

S= (linear) momentum,

v = velocity of atmosphere with respect to the satellite,

m = mass of atmosphere.

The following fairly obvious sequence of equations (Fig. 3),

dm = pdV , (17)

dV = da dh , (18)

dh = ds cosa , (19)

cosa = e e , (20)
n v

ds = v dt , (21)

where

p = density of atmosphere,

V = volume of atmosphere,

da = surface element of satellite,

9



= normal unit vector of surface element, pointing toward then "outside,"

e = v/v = unit vector of v,
v

yields upon substitution an equation for dp.

dr

da d

dh

Figure 3. Atmospheric force on surface element.

Obviously, only those parts of the surface will contribute to the momen-
tum g that satisfy the following two conditions:

1. The surface part is not shaded against the atmospheric stream by
another surface part.

2. cosoz 0, i.e., -en e 0. (22)

Combining these results, we find for the momentum transferred to the surface
element da

d = pv(- e
n ev) ) e dadt , en e 0 (23)

10



and for the force df = di/dt

df = pv 2 (-en ev) ev da ,e ev 0 (24)

For later use, we note that cosa da = -e e da is the projection of the
n v

surface element da onto a plane orthogonal to the velocity vector v.

B. Differential Torque

From the force df we get the differential torque di with respect to the

point P as

d7 = ( -~ x d

or

dl = pv 2 (- e ) (R -)x e da , e e - 0 , (25)
p nv v nv

where R is the location vector of the surface element da.

The total force f and torque I are calculated by integrating equations
p

(24) and (25) over the permissible surface area; i.e., the area that satisfies
the conditions (22).

VI. FOURIER EXPANSION OF AERODYNAMIC FORCE AND TORQUE

Except for very simply shaped bodies, the aerodynamic force and torque
as given by (the integrated form of) equations (24) and (25) are complicated
functions of the body shape and the direction of the velocity vector v of the
atmosphere (via the integration over the body surface). It results, however,

11



that both force and torque are, for a fixed given body, periodic functions of the
two angles describing the direction of the atmospheric velocity vector.

We shall subsequently establish the Fourier series representing these
periodic functions and in the next part specialize it to a Skylab-type satellite.
Consider the atmospheric force and torque in the body-fixed coordinate sys-
tem r~; then, 17 = 7 . In the orbital frame, the atmospheric velocity vector
v is

v = v 0 (26)

0

and for the q-coordinate system

v = -v4 0

0

g sQ3 0 c2 0 -s 2  1 c 

= v _sc 3 0 1 = -v c2 s0 ) . (27)

0 0 1 S2 0 e2 0 s02

Comparing this with the representation

ca cp

ca sf

so/

12



of a unit vector in spherical coordinates where a is the latitude and /3 is the
longitude, we see that we can interpret 42 as latitude and 03 as negative
longitude in the 7-coordinate system.

In general, the area of the satellite exposed to impact of atmospheric
particles is a discontinuous function of the direction of the atmospheric veloc-
ity vector; i.e., of the components c 2 c3 , -c 2 s3, S2 of e v , and thus of the
angles 42 and 03 (think, for example, of a planar part of the satellite that
changes from not being exposed to being exposed to impact instantly at certain
values of 42 and 43). Nevertheless, the projection of the area onto a plane
orthogonal to the atmospheric velocity vector and the projection's boundary
are continuous functions (of the body shape and) of the components of e .

v

As mentioned previously, this projection of the surface element da is

da* = -e e da (e e - 0) ; (28)
nv nv

hence

force f (0 2, 43) = py2 e  f da* (29)
projected
area

and

torque I (2, 3) = pv 2 f (R- P) e da* (30)
projected
area

= pv2  fda* x e -pv2 P e fda* ,(31)
projected projected
area area

where the second term on the right of equation (31) is just - P x f. All inte-
grals and thus f and I are continuous functions of 42 and 43; to repeat, the

13



angles enter the functions f and I only through the components of e in the
P v

combinations ec2 c0 3, Ce2 s03, s02. We can now write the following Fourier
series:

p,v=O

+ D1 s2 SV)3) (32)

7= T= cA 2 CV2 3 + F Cf 2 SV 3 +G S/M2 CV 3P MV AV lv

+ H V S2 sV03) (33)

or, in easily understood abbreviation,

f = fec+ Ef cs+ Efsc+ F fss

(34)
T = Y£cc+ lIcs+ EIsc+E1ss

Equations (34) state that each component of f and I is of the indicated form,
where, for example, ' fcs stands for E (appropriate coefficient for f-term).
cjA 2 sv1 3, and all sums are taken over the appropriate values of the indices,
as later stated in each case.

By various invariance considerations, some general and some special-
ized to a Skylab-type satellite, we will show that "most" of the coefficients in
equations (32) and (33) actually vanish.

By previous remarks the Fourier series must remain unchanged under
all transformations of the angles 02 and 03 that leave the components c¢2 c0 3,
c02 sO3, and s02 of e unchanged. The set of equations

14



c¢ 2* c 3* = c¢ 2 cg3

c¢ 2* s¢3* = c¢2 s¢3 (35)

s2" = s¢ 2

has the two solutions

(Trivial)- I: 02* = i2 , p3* = )3

(36)

II: 02* = 7r- 2, 3* = 7r+ 03

hence we must have

f ( 02, 03 ) = f( r - 02, r + 3)

(37)T(0 2, 03) = T(7 - o, 7 + 03)

By a routine process of comparing coefficients we find the reduced series

= fce + fcs + Zfsc + fss
p+v even p+ v even p+ v odd u+v odd

S= Z£cc + Dcs + D£sc + Z£ss (39)
p+ v even i+ v even A+ v odd I+ v odd

The second consideration applies rigorously to the force f only. It

is obvious that the projected area fda* is the same for e and -e ; therefore

[see equation (30)] the substitution e - -Z implies f - -f The equations

15



C I 2* Cp 3" = -C ¢ 2 C I 3

ci 2* si 3* = -C 2 S0 3  (40)

s¢ 2* = -s4 2

have the two solutions

I: 02* = - 2  , 03* = 7+ 0 3

(41)

II: 2* = + 0 2  , 0 3* = 0 3

both these solutions lead to the reduction of equation (38).to

f= fcc + fes + Zfsc + Zfss (42)
W odd p odd p odd p odd
v odd v odd. v even v even

VII. SPECIALIZATION TO A SKYLAB-TYPE SATELLITE

We assume now that the satellite is symmetric with respect to the 71,
173-plane. This implies that for a surface element da at i71, 72, 13 with
-T
en = (en1 en 2 en 3 ) there is a surface element at 7, -72, 73 with e T

n
(enl -en2 en 3 ) and the same area. Write T as a sum of integrals over

the "right" (172 - 0) and the "left" (172> 0) parts R and L of the satellite:

16



ev1
f = pv fe e +e e +e e e 2 da

R n vl n2 v2 n3 v3

ev3

eVI
+ f I e n ev l -e n

2 ev 2 + e
n 3 e v 3 ( e v 2  da (43)

L

v3)

Under the reflection

(71 )2 773) ()1 -772 773) ' (el ev2 ev3) - (evl -ev2 ev3) (44)

corresponding to the 71, 7r3-p l ane symmetry, the integrals change according
to

S- f e nl ev l -e n 2 ev 2 + e ev 3  -e da
R L

ev3

and (45)

f-- f le nl e v l + e n2 e v2 + e n3 ev 3 1 -ev 2
L R

Hence, under this reflection the force f is changed according to

-T
f = ( ff 2 f3) -(fl-f 2 f3 ) (46)

17



as we would expect intuitively. Similarly, we find that the torque 7 is
changed according to

-T 1 = (l 2 3) (-1 2 2-3) (47)

(Observe that for equation (47) to hold we assume that the reference point P
lies in the symmetry plane 72 = 0.)

We now use the just discussed symmetry for a further reduction of the
Fourier series (39) and (42). The transformations of the angles 02 and 03corresponding to the transformation (44) are solutions of

c) 2* c) 3* = cp 2 c0 3

C02* S0 3* = -c0 2 s53 (48)

s¢2* = s02

the two solutions are

I: ¢2* = 02 , 3 = -)3

(49)

II: 02* = 7r- 2  , 3* = 7-03

Taking into account the change of f and .e according to (46) and (47), both
solutions (49) lead to the same further reduced Fourier series

I, , f = fcc + Zfsc (50)
p odd Ip odd
v odd v even

18



f2 = fcs + Yfss (51)
j odd 1 odd
v odd v even

.1,1 = ZIcs + Y1ss (52)
A+ v even P+ v odd

2 = ecc + CZse . (53)
p+ v even p+ v odd

To achieve another reduction of the force terms, we can argue as
follows. Under the transformation 02 - 2 (reflection on the 771, 72-plane)
the projected areas remain unchanged (if we neglect shading effects, which
are considered to be relatively small), since every part of the satellite is
(assumed to be) symmetric with respect to some plane parallel to the 77,
r 2-plane (Fig. 4). Hence, if we change

-T
e v  =(e e 2 e) -(e ev 2 ev) (54)

which corresponds to 02 - -¢2, we get

T
f = (fl f 2 f 3) (f 1 f2 -f 3) (55)

(see, for example, the foregoing discussion of the 711, 7 3-plane symmetry),
and it follows that fl and f2 are (approximately) even functions of 02 , and f3
is (approximately) an odd function of 02 . Applied to equations (50) and (51),
this leads to

ft fcc (56)
1i odd
v odd

19



77

Figure 4. 77-coordinate system with respect to satellite.

f 2 fcs (57)
A odd
v odd

f3 z fsc . (58)
p odd

v even

To further reduce the Fourier series for the torque 7, we have to use
the specific geometry of the satellite and must restrict ourselves to only
approximately valid arguments and conclusions. Thus, we assume that the
satellite is composed of a main cylindrical part 1, of circular cross section
and with orthogonal planar end panels 2a and 2b, and of rectangular flat panels
3a, 3b, and 5. The part 4, connecting the cylindrical mantle 1 and panel 5,
will be neglected (Figs. 4 and 5).

20



2b

Figure 5. Shape and parts of idealized satellite.

For the following considerations, the origin of the coordinate system

is at the center of the main cylinder 1, and the 73-axis is its centerline. The

panel 2 = 2a + 2b is parallel to the 71, 2-plane, and the panels 3 = 3a + 3b

and 5 are parallel to the 72, 773-plane. Both panels 3 and 5 are symmetric

with respect to the 771, 7T3-plane (assumed basic symmetry). [We argue here

in an elementary geometrical and mechanical manner. A more precise deri-

vation can easily be supplied by the method used to derive equation (46).]

Shading effects are neglected.

First, we proceed as before in a general fashion; we get, however,

results only for 13. Consider the transformation e -- -e . It is easily seen
V V

that the torque I with respect to the origin of the panels 3 = 3a + 3b and 5

transforms like 7- -1. For the mantle 1 and panel 2 = 2a + 2b, the torque

transforms like 7-- (observe, for example, that for ev3 > 0 only 2a, but

not 2b, which is shaded by 1 and 2a, experiences torque). Because of sym-

metry, both for 1 and 2, we have 13 = 0; thus

S1 3 cs + Iss . (59)

1 odd I odd
v odd v even

Under the transformation 02 - 2, i.e., (evl, ev 2 ev 3) - (ev 1 ev 2 -ev 3 ), for

both panels 3 and 5 we see that 13 - 13 (also 1, - 11, which we cannot use);

thus, 13 must be an even function of ¢2, and we get

" cs (60)
12 odd
v odd

21



A direct calculation of the torques on the various parts and addition,
with shading effects neglected as before, yields considerably sharper results.
Applying formula (31) for the torque 7, it can be shown that the torque of the
complete cylinder, mantle 1, and panels 2a and 2b is always zero. Thus, we
need to consider only the panels 3 = 3a + 3b and 5. Both 3 and 5 are sym-
metric with respect to the plane 772 = 0; therefore, the vector q from the
origin to the geometric center of 3 or 5 is

q1

q = (61)

q3

The torque of each panel with respect to its geometric center vanishes, and
the force f can easily be computed from equation (29) to be

f = pv 2 Al evl I e (62)

where A is the total area of the panel. Thus, the torque " on each panel is
of the form

-q 3 ev2
S= pv 2 A ev1 qxe = pv 2 A  

1  q3 v1 -q ev3 (63)

1 v2

We see that the total torque with respect to the geometric center of the
cylindrical main body 1 + 2a + 2b on the satellite is of the same form.

Generally, the Fourier series for I cosaI is a cosine series containing
only even multiples of ao; using this fact, we find

,, 13 ~ i 2 03 C c2 S3 [o (coeff) cg (coeff) sv 3
dd [ odd

= cs (64)
p odd
v odd

22



12~ c 3 I cl (q c2 C3 - q1 S2) -= lcc + EC sc (65)
p odd A odd
vodd v even

We assume further that the center of mass of the satellite lies in the plane

772 = 0 and that the axes of the geometric coordinate system (the specialized l-
system used last) and the X-system (principal axes system) are parallel. If

p is the vector from the origin of the X-system to the origin of the 77-system,

we get for the total torque . . with respect to the center of mass
c ,o.m.

I i - P3 f 2

Sc.o.m.= + pxf = 1 + P3 fl - P 3 , (66)

13 + Pi f 2

and using fl, f2 , and f3 from expressions (56) through (58), we see that the

components of I have the same structure [expressions (64) and 65)]
c.o.m.

as those of 1.

The expressions (56) through (58) foir the force components and (64)

and (65) for the torque components have, suitably truncated, the form given

by Nurre [ 11, p. 1047, equations 51 (there, in the last term, read c302 for s3).

Now we use the angles j., and for the form of the final expressions for

f and 1, we take that given by Nurre [1] [for the notation, see expressions

(32) and (33)]:

fl = A11 1 cII 2 c 3 + A 131 C 92 c3t 3 + A3 11 c3 2 c h + A3 31 c3l 2 c3 3'

f, = B 1 12 c~ 2 S 3 + B 132 C " 2 s39 + B 312 c3 2 s 3 + B3 32 C3 2 S 3
3  (67)

f3 = C10 3 s-2 + C 123 s-2 c2"3 + C3o3 s32 + C 323 s3'2 c2' 3

23



1 = F 111 c'2 s 3 + F 13 1 C192 s39 + F3 11 c312 sh3 + F33 1 c35 2 s39 3

2 = E 11 2 c~2 C.3 + E 1 3 2 c192 c393 + E3 1 2 c392 c 3 + E3 3 2 c31 2 C3t 3

. (68)

+ G102 s"2 + G122 s 2 c2l 3 + G3 02 s3M2 + G322 s39 2 c2' 3

13 = F 1 13 c9, sL3 + F 133 c92 s3t3 + F313 c34 2 s, 3 + F 333 c3l 2 s3t 3

VIII. EQUILIBRIUM

The equilibria of a system x = g(x) of differential equations are defined
to be the special solutions with all derivatives set to zero; i.e., the solutions
of g(-) = 0. The equilibria of the equation of motion (8) are the solutions of

x/.- - " = 0 (69)g a = (69)

where I is given by (11) and (15), a by (68), anda 2by (9).

With

I= 0 I 0 (70)

0 0 13

we have

(13 - I2) 022 032

x ]T = 2  (I 3) 012 32 ) (71)

I - ) 0 12 22/

24



The vector equation (69) represents a system of three scalar equations for

the three quantities 1, 2, and '3 and in general there exist finitely many
solutions mod 2 ir.

In our case, the solution of most interest is 91 = 3 = 0; the first and
third components of (69) vanish identically, and the second is of the form (A,

B, ... , E are constant coefficients)

Act 2 + Bs 2 + Cc3W2 + Ds3W2 + EcJ 2 s92 = 0 , (72)

which can be solved for '2; denote a solution of interest by 4.

IX. LINEARIZED EQUATIONS OF MOTION

For the investigation of the linear stability of the previously described
equilibrium = 3 = 0, %2 = 2, we set

9 = -- , ' 2 = 61 + 62 ' 3 = 63 (73)

and linearize the equations of motion (8) with respect to the 6. and their
time derivatives. Using

c(42 + 62) c4 - 62 s4 2 = c* - 62 S*

(74)

s(P* + 62) s12 + 62 c11 = s* + 62 c*

we easily derive

It I1 3 12 s* I + I13 12 1 3 I 261 + + 1 6 3 - I 6
1 -(M + 13 2 s*) 63 = 0

I c* 11 c* I it

(75)
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62 + [3h1- 3 (c*2_ S*2) M 262 = 0 (76)

6 s 6 + 4223-2 1 c*6 + 4 s*61 + II (1+ 3s*2) -M = 0I 13 1+

(77)

where M 1, M2, and M3 are certain constants.

X. LINEAR STABILITY

Equation (76) for 62 is not coupled to the other two equations; its
stability behavior is determined by the coefficient of 62. The solution is
unstable if

3L- I3 (c* 2 _s* 2) _ M 2 <0 ; (78)

for > 0 in (78) the solution can be represented by trigonometric functions.

Of more interest is the system (75), (77); it is of the form

A6E+ B6 + C6 = 0 (79)

where A, B, and C are 2 by 2 matrices and 6T =(61 62). Introduce = 6; then

6-a = 0

(80)
Aa + C6 + Ba = 0
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or in matrix form,

S(81)

(U 0)() (0 U)(6) = 0 , (81)

where U is the 2 by 2 unit matrix. Since

0 A0 A -

we get the standard form

() + (0 -U = 0 . (82)
a A'IC A-'B

The coefficient of the cubic term in the characteristic polynomial of (82) is

the trace of the coefficient matrix, which is here the trace of A- ' B; since

(' , ) I1 --

A- 1 = , B = 2  (83)

(-s* 1 1 I1 02 13

we conclude that this trace vanishes. Moreover, this coefficient is the sum

of the four roots of the characteristic polynomial, and since it vanishes, not

all roots can have a negative real part (the sum of the real parts must vanish)

and the solutions cannot be stable.

27



XI. CONCLUSIONS

The discussions and results of Sections IX and X indicate that the
conclusion concerning the instability of a Skylab-type satellite caused by aero-
dynamic torque is rather generally valid; neither the specific values of the
coefficient in the Fourier expansions of the aerodynamic torque nor the specific
value of the equilibrium angle 4# enter into the final conclusion. Of course,
the form of the expansions (i.e., the set of the nonvanishing coefficients) and
the form of the equilibrium solution do influence the final result. Further-
more, it is a general experience that perturbations of the considered "pure"
problem, such as asymmetries of the satellite, a noncircular orbit, the basic
nonlinearity of the problem, etc., will increase the instability. Thus, we can
state with reasonable justification that a satellite of Skylab's type is not
stable under the influence of high altitude aerodynamic torques.
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